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WAVE REGIMES ON A NONISOTHERMAL FILM

OF A VISCOUS LIQUID FLOWING DOWN A VERTICAL PLANE

UDC 532.51O. Yu. Tsvelodub

A thin film flow of a viscous liquid flowing down a vertical wall in the field of the gravity force
is studied. The values of temperatures on the solid wall and on the free surface are constant. The
viscosity and thermal diffusivity are functions of temperature. An equation that describes the evolution
of surface disturbances is derived for small flow rates in the long-wave approximation.

Key words: nonisothermal film flow, evolution equation, soliton solutions.

Thin liquid films flowing down in the field of the gravity force have been studied for more than 50 years,
because this phenomenon is widely used in various technological processes.

Considering the behavior of isothermal liquid films depending on parameters of the initial undisturbed flow
provided a rather large number of models that have to be studied. Nonisothermal films have aroused significant
recent interest. Allowance for the effect of temperature is a complicating factor. As the temperature affects the
physical parameters of transport, local heating and cooling support thermocapillary effects, and liquid condensation
or evaporation affect the flow geometry and conditions on the free surface, many of the models are multiparametric,
and it is difficult to analyze them in detail (see, e.g., [1, 2]).

In the present work, we consider a viscous liquid film flow down a vertical wall in the field of the gravity force.
The density and specific heat are assumed to be independent of temperature. The values of temperature on the solid
wall and on the free surface are maintained constant. The viscosity and thermal diffusivity are certain functions
of temperature. Such an approach allows adequate modeling of film flows with evaporation or condensation, where
the heat fluxes are not too intense and there are minor changes in film thickness.

The main objective of this work was to derive a model equation that could be used to study wave regimes
of a nonisothermal liquid film flow.

1. Formulation of the Problem. We consider a thin film flow of a viscous liquid down a vertical plane
in the field of the gravity force. The flow structure and the coordinate system used are shown in Fig. 1.

The dependence of the density ρ and specific heat c of the liquid on temperature is neglected. The values of
temperature on the solid wall Tw and on the free surface Ts are maintained constant. The viscosity μ and thermal
diffusivity a are certain functions of temperature:

μ = μ0ϕ(θ), a = a0f(θ).

Here μ0 and a0 are the values of viscosity and thermal diffusivity on the free boundary; θ = (T − Tw)/(Ts − Tw).
The isothermal viscous liquid film flow of constant thickness is known to be unstable to infinitesimal per-

turbations even in the case of extremely small flow rates; further evolution of perturbations leads to formation of
waves. To describe similar regimes in a nonisothermal viscous film, we write the equations of motion in dimension-
less form. Let h0 be the film thickness without perturbations, U0 be the velocity on the free surface, and L be the
characteristic longitudinal scale of the perturbation. Then, using the quantities L/U0 and U0 as scales of time and
velocity, μ0U0/h0 as a scale of stress tensor components, ρgh0 as a scale of pressure, and L and h0 as scales in x,
z, and y directions, respectively, we obtain the problem in dimensionless variables
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Fig. 1. Flow structure.
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with the conditions on the solid wall (y = 0) and on the free surface [y = h(x, z, t)] in the form

u = v = w = θ = 0, y = 0,

(p − p0 − We (K1 + K2))ni − (Fr / Re)τiknk = 0, y = h(x, z, t), (1.2)

θ = 1.

Here u, v, and w are the x, y, and z components of velocity, p is the pressure in the liquid, p0 is the ambient
pressure (without loss of generality, we can assume that p0 = 0), ni are the components of the normal vector

n =
(−εhx, 1,−εhz)√
1 + ε2h2

x + ε2h2
z

,

Ki are the dimensionless principal curvatures of the free surface

K1 + K2 = − (1 + ε2h2
x)εhzz − 2ε3hxhzhxz + (1 + ε2h2

z)εhxx

(1 + ε2h2
x + ε2h2

z)3/2
,

(the subscripts at the quantity h mean differentiation with respect to the indicated variable), and τik are the
dimensionless components of the stress tensor:

τxx = 2ϕ(θ)ε
∂u

∂x
, τyy = 2ϕ(θ)
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Equations (1.1)–(1.3) contain the following parameters: ε = h0/L, Reynolds number Re = ρh0U0/μ0, Froude
number Fr = U2

0 /(gh0), Weber number We = σ/(ρgh2
0), and Peclet number Pe = h0U0/a0.

The following kinematic condition is also satisfied on the free boundary:

ε
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)
= v, y = h(x, z, t). (1.4)

If there are no perturbations, problem (1.1)–(1.3) reduces to the following system of equations:
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= 0; (1.5)

U = θ0 = 0, y = 0,

U = θ0 = 1, τxy = ϕ(θ0)
dU

dy
= 0, y = 1.

(1.6)

To solve this problem, we have to know particular forms of the functions ϕ(θ0) and f(θ0). The solution of the
system is written as

U(y) = ϕ1(y)/ϕ1(1).

The temperature profile θ0 is determined as an implicit function

y = f1(θ0)/f1(1).

Here

ϕ1(y) =

y∫

0

(1 − y) dy

ϕ(θ0)
, f1(θ) =

θ∫

0

f(θ) dθ.

By virtue of normalization U(1) = 1, we have Fr/Re = ϕ1(1).
In what follows, we confine ourselves to considering long-wave disturbances (i.e., ε � 1) and assume that

the Reynolds numbers are sufficiently low: Re � 1.
To use the method of multiple scales (see, e.g., [3]), we introduce a set of fast and slow times and new

functions:

τm = εmt, m = 0, 1, 2, . . . ,

u = U + εu′, v = ε2v′, w = εw′, p = p0 + εp′, θ = θ0 + εθ′, h = 1 + εh′.

In further consideration of the problem, we neglect terms of high orders with respect to ε. Thus, the functions
ϕ(θ) and f(θ) can be presented as

ϕ = ϕ0 + εϕ′
0θ

′ + ε2ϕ′′
0θ′2/2, f = f0 + εf ′

0θ
′ + ε2f ′′

0 θ′2/2.

Here ϕ0 = ϕ(θ0), ϕ′
0 = dϕ(θ)/dθ for θ = θ0, ϕ′′

0 = dϕ′
0/dθ for θ = θ0, f0 = f(θ0), f ′

0 = df(θ)/dθ for θ = θ0, and
f ′′
0 = df ′

0/dθ for θ = θ0. Thus, the values of the functions ϕ(θ) and f(θ) and their derivatives are taken for values
of the functional argument corresponding to a plane film flow described by problem (1.5), (1.6).

Neglecting terms of the order of ε2 and higher and shifting the boundary conditions from the free surface
to its undisturbed level (i.e., expanding all functions with respect to the powers of εh′), we obtain the system of
equations (with omitted primes at the disturbed quantities)
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with the boundary conditions

u = v = w = θ = 0, y = 0,
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In writing condition (1.8), we take into account that ϕ0(1) = f0(1) = 1 and the Laplace operator is Δ =
∂2/∂x2 + ∂2/∂z2. Terms of higher orders with respect to ε are also left in Eq. (1.8), because the values of We for
thin liquid films are normally rather high. Therefore, we assume that We � 1 and We ε2 � 1.

The kinematic condition (1.4) acquires the form

hτ0 + εhτ1 + hx + εuhx + εwhz = v + ε
∂v

∂y
h, y = 1. (1.9)

The solution of problem (1.7), (1.8) is sought in the form of series with respect to ε:

(u, v, w, p, θ, h) =
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m=0

εm(um, vm, wm, pm, θm, hm). (1.10)

Equating the coefficients at identical powers of ε in the original system of equations to zero, we obtain
simpler [than Eqs. (1.7) and (1.8)] systems corresponding to different orders of ε. The quantities um, vm, wm,
and θm as functions of hm can be easily obtained from these systems. Substituting these data into the kinematic
condition (1.9), we obtain the equation for film thickness perturbations. Thus, for a zero order, Eqs. (1.10), (1.7),
and (1.8) yield the system
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with the boundary conditions
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Solving problem (1.11), (1.12), we obtain the following expressions for the disturbed quantities of the zero order:

u0(x, y, z, t) = (Re / Fr)ϕ2h
0, v0(x, y, z, t) = −(Re / Fr)ϕ3h

0
x,

w0(x, y, z, t) = 0, p0 = −We ε2Δh0, θ0 = F1h
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(1.13)
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Here
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Substituting Eq. (1.13) into Eq. (1.9), we obtain an equation that describes the behavior of disturbances in
the first approximation:
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It follows from here that, in the first approximation, all disturbances propagate with a constant velocity, which is
greater than the flow velocity on the flat free boundary by a factor of c0:

h0 = h0(ξ), ξ = x − c0τ0.
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Solving problem (1.15) and taking into account Eqs. (1.13) and (1.14), we obtain the following formulas for distur-
bances of this order:
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In Eqs. (1.16), we do not give terms for the disturbances h1, v1(x, y, z, t), and u1(x, y, z, t), with respect to
which the kinematic condition is invariant. The functions Fi and ϕi in these expressions are determined as follows:
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2. Model Equation. Substituting Eqs. (1.16) into the kinematic condition (1.9) and requiring the absence
of secular terms in the expression for h1, we obtain a nonlinear equation for determining h0:

h0
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x + Re ϕ9(1)h0

xx + We ε2ϕ10(1)Δ2h0 = 0. (2.1)

Here A = 2ϕ11(1) + ϕ2(1)/ϕ1(1).
Knowing h0, we can determine all the remaining disturbed quantities in Eq. (1.10) up to the first order

inclusive from Eqs. (1.13) and (1.16).
Thus, Eq. (2.1) describes the evolution of spatial disturbances on a nonisothermal liquid film flowing down a

vertical plane. It follows from Eq. (1.14) that Eq. (2.1) is written in a frame of reference moving with a velocity c0

with respect to the wall.
Let us specify the choice of the characteristic longitudinal scale L. We require the absolute values of the

coefficients at the third and fourth terms in Eq. (2.1) to be identical. Then, for the small parameter ε used in the
expansion, we obtain

ε =

√
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We ϕ10(1)

;

correspondingly, the characteristic longitudinal size of disturbances is determined by the equality

L =

√
We ϕ10(1)
Re |ϕ9(1)| h0.

It follows from these relations that the assumption of the long-wave character of disturbances considered is valid
for high Weber numbers, like in the case of isothermal liquid films. In addition, the ratio ϕ10(1)/|ϕ9(1)| should be
of the order of unity. Here we take into account that the dimensionless flow rate in the film is ϕ10(1) > 0. Finally,
using the substitution

h = aH, τ = dτ1, a = Re ϕ9(1)/(4A), d = Re ϕ9(1), (2.2)

we transform Eq. (2.1) to the equation
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Equation (2.3) is a typical example of model equations arising in studying the evolution of disturbances in
active dissipative media, where infinitesimal periodic pertubations exponentially grow or decay, depending on the
value of the wavenumber. Depending on the sign of ϕ9(1), Eq. (2.3) has two forms:
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∂z2

)2
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The signs in Eq. (2.3) can be determined only if the form of the temperature dependences of the viscosity μ and
thermal diffusivity a are known: μ = μ0ϕ(θ) and a = a0f(θ).

Note that Eqs. (2.4) and (2.5) for plane waves H = H(x, τ) coincide with the equations obtained in [4]
in studying plane disturbances on a two-layer isothermal film. It was noted [4] that the one-dimensional analog
of Eq. (2.4) is of most interest from the viewpoint of realization of rather complex wave solutions. In this case,
Eq. (2.4) has the form

∂H

∂τ
+ 4H

∂H

∂x
+

∂2H

∂x2
+

∂4H

∂x4
= 0. (2.6)

This equation is currently known as the Kuramoto–Sivashinsky equation. As applied to film flows, this equation
was first derived in [5]. Equation (2.6) was studied in much detail, and many of its solutions were found (see, e.g.,
[6, 7]).

In the case of Eq. (2.5), the structure of plane solutions is simple: they all decay with time. We can easily
demonstrate that the spatial solutions of Eq. (2.5) behave in the same manner. Of greatest interest is the case where
the model yields Eq. (2.4). It is this equation that is obtained for isothermal films [8]. Apparently, an identical
equation will be obtained for typical dependences of μ and a on θ.

Thus, within the framework of approximations used for different dependences of μ and a on θ, the description
of the behavior of spatial disturbances reduces to studying the solutions of one equation (2.3). The wave profiles
are similar and are determined by the transformation parameters (2.2), i.e., their characteristic velocities c0 and
the coefficients in Eq. (2.1) depend on the form of μ and a, but the waves themselves are “topologically” similar:
particular forms of the wave profiles for different models can be obtained one from another by simple recalculations.
Thus, the currently available information on the wave solutions of Eq. (2.4) in studying the wave regimes of the
isothermal film flow offers an idea of the wave pattern of nonisothermal flows. For instance, a systematic study of
the steadily traveling solutions

H = H(ξ, z), ξ = x − cτ

showed that Eq. (2.4) has a countable set of families of such solutions (see, e.g., [9, 10]). The most interesting of
them is the solution in the form of a solitary wave, the so-called horseshoe soliton.

For an isothermal liquid film, the solitary solution was first found numerically in [11]. Soliton regimes for a
Newtonian fluid quantitatively consistent with those calculated in [11] were experimentally obtained in [12, 13].

Conclusions. It follows from the equation derived in the present work that available results for isothermal
Newtonian films can be used in modeling wave processes in down-flowing nonisothermal liquid films for a wide class
of temperature dependences of viscosity and thermal diffusivity if the flow rates are sufficiently low. In particular,
flow regimes in the form of horseshoe solitons are expected to exist in nonisothermal films.
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